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In this paper the vibrational characteristics of thin, mass-loaded, stepped plates are
investigated. The dimensions of the plates are chosen so that the steps can be thought of
as representing the periodically placed stiffeners commonly found in many engineering
structures. To achieve this, a classical analytical approach for the analysis of the vibration
of a simply supported, stepped plate is first considered. Next, a method for the analysis
of such plates carrying concentrated masses is reviewed. The above two analytical methods
are then combined to analyse the vibrational behaviour of thin, simply supported and
mass-loaded stepped plates. To assess the accuracy of these methods, the resultant
frequency responses of the unloaded plate are compared with the Dynamic Stiffness method
[1] and those for both the unloaded and mass loaded plates with finite element calculations.
For a uniform, mass-loaded plate, there is perfect agreement between the frequency
responses obtained from these methods. For the mass-loaded, stepped plate, the agreement
is not so complete, the reasons for which are discussed in the paper. The final part of the
paper deals with optimisation of the mass positions in order to improve the vibrational
behaviour of the plate. In this work, the integral of the frequency response function of the
mass-loaded plate over a frequency range containing some 10–15 natural frequencies is
regarded as the objective function. The drive and response points are chosen to lie at
opposite ends of a plate with high aspect ratio and transverse stiffeners, so that minimizing
the frequency response is equivalent to designing vibration isolation characteristics into the
plate. The Genetic Algorithm, which is an evolutionary optimization method, is employed
to produce the required designs. It is demonstrated that the optimized mass positions
significantly improve the vibrational behaviour of the plate.
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1. INTRODUCTION

An increasingly important area in all fields of engineering is the problem of noise and
vibration control. In many engineering structures the main source of noise is vibrations.
Structures, such as those of aircraft and ships, often contain many vibrating parts that,
despite isolation treatments, excite motions at their mounting points producing such noise.
These motions can be large due to the inherently low damping characteristics of the
structures and these can propagate large distances through the structure. Commonly, such
noise is eradicated by employing heavy viscoelastic damping materials which lead to
increases in cost and weight [2]. Another solution that is often adopted is to use vibration
isolators between pieces of equipment and their supporting structures. Obviously, isolating
large pieces of structures can be difficult and expensive and with some structures, such as
the wings on an aircraft, almost impossible.

In recent years, much attention has been focused on active noise control of structures.
Using this approach, unwanted vibrations can be cancelled out by the employment of
‘anti-noise’ to block noise propagation. However, active noise control measures can be
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expensive to install and maintain and because of this passive solutions, if achievable,
would be preferable. One passive approach that has been extensively studied, mainly
for use in aircraft fuselages, makes use of the vibration characteristics exhibited by
structures with geometric periodicity. Such structures possess so called ‘stop-bands’
which are regions of the frequency domain where natural frequencies do not occur
and where travelling waves are very rapidly attenuated by constructive reflections
[3, 4]. These characteristics become increasingly complex as the nature of the
periodicity becomes more complex and also as the structure moves from one, through
two, to three dimensional. Furthermore, noise control cannot be based solely on
structural periodicity since post-design modifications or lack of accuracy in
manufacturing can shift or disrupt the stop bands. If a noise isolation technique is
to be of practical use, it must yield robust designs.

Keane [2] has shown that significant noise isolation characteristics can be introduced
into structures by modifying their geometries in a controlled manner, using
optimization techniques. Moreover, the resultant structures are still functional even at
frequencies away from those where the noise control is achieved. The reference notes
the improvement in the noise performance of some structures that can be obtained
by departing from conventional geometrically uniform designs. This idea is developed
further here by its application to plated and stiffened structures.

2. CLASSICAL METHOD

In reference [5], a method for analysing the modes of vibration of simply supported
plates with uniform and stepped thicknesses is developed, based on the work of
Chopra [6], which was initially applied to a plate with only one change in thickness.
The extended results presented there are capable of dealing with the vibration analysis
of a multi-stepped plate, especially for high order modes. This is a significant
improvement, since the original method is inadequate for high frequency analysis. This
is mainly due to the matrix, on which the eigenvalue calculations are based, being
ill-conditioned. Furthermore, some boundary conditions that were inappropriately
adopted in the original reference were redefined in the later work. In what follows,
the steps required to carry out such an analysis are briefly recapitulated.

Consider a multi-stepped plate, simply supported on all sides, as shown in Figure 1. In
order to analyse the vibrational behaviour of this plate, it can be divided into parts
according to its thickness changes in the longitudinal direction. Each part of the plate, j,

Figure 1. A simply-supported stepped plate with four joint lines.
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Figure 2. A simply supported stepped plate with two joint lines.

being of uniform thickness, can be represented by the following governing differential
equation

Dj 9
4Wj + rtj

12Wj

1t2 =0 (1)

or assuming harmonic motions for free vibration,

(94 − k4
j )Wj =0 (2)

where Wj is the displacement function of the jth part and has the following general solution

Wj (x, y)= s
n

cjn (x) sin (npy/b) (3)

where n is the number of nodal lines in the y-direction and cjn (x) is the shape function
in the x-direction which is in turn given by

cjn (x)=Ajn sin (l1j x)+Bjn cos (l1j x)+Cjn sinh (l2j x)+Djn cosh (l2j x) (4)

where l1 and l2 are given by

l1j =zk2
j − a2 and l2j =zk2

j + a2 with a= np/y. (5)

The eigenvalues and mode shapes of the plate can then be found by applying the boundary
conditions to (3) for each part and solving for the natural frequencies.

2.1.  

The shape functions for the first and last plate elements can be reduced by applying the
simply supported boundary conditions to them, i.e. displacement and moments at x=0
and x= a are zero. For the middle plates, however, at each joint connecting two plates,
four continuity conditions exist. The displacements, slopes, moments and shear forces of
the adjacent plates at a joint are the same, and hence, four equations corresponding to
each joint line can be established. This implies that for a plate, divided into N parts, there

T 1

Properties of the uniform plate

h1 = h2 =0·001 (m) Forcing point (xj , yj ) (m)= (0·1, 0·1)
E=206·8 (GPa) Response point (x0, y0) (m)= (4·9, 0·9)
r=2780 (kg/m3) a=5 (m)
n=0·29 b=1 (m)
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Figure 3. A simply supported plate excited by a periodic point force.

are 4×N equations that involve the shape function coefficients of the plates, given by
equation (4). The overall equations of the motion of the stepped plate are then given by
the following matrix equation

[K(l)]{C}= {0}. (6)

The eigenvalues of the vibrating plate are obtained from the frequencies that make the
determinant of the matrix [K(l)] zero. Subsequently, the mode shapes of the plates are
obtained by evaluating the relative values of the coefficients A, B, C and D and substituting
them back into the shape function (3).

2.2.    

As mentioned earlier, this method usually fails to calculate the high order modes of a
stepped plate because of numerical problems. The reason for this is that at high
frequencies, the elements of some columns of the [K(l)] matrix tend to zero and some
others tend to large identical values. In either case, the matrix becomes ill-conditioned or
singular, leading to difficulties in the numerical analysis of the eigensolutions. To overcome
this problem, the shape function (3) can be scaled to accommodate the high frequency
behaviour of each plate [5]. Consider the stepped-plate in Figure 2, that contains two joint
lines. The shape function of each plate for different frequency ranges can be defined as
follows
Plate 1 (0Q xQL1)
for k2 q a2

W1 (x, t)=

A1 {sin (l1 [L1 − x])− tan (l1 L1) cos (l1 [L1 − x])}+C1 6e−l2 (x+L1) − el2 (x−L1)

1+e−2l2 L1 7 (7)

and for k2 Q a2

W1 (x, t)=A1 6e−l1 (x+L1) − el1 (x−L1)

1+e−2l1 L1 7+C1 6e−l2 (x+L1) − el2 (x−L1)

1+e−2l2 L1 7. (8)

Note that at the boundaries the effect of the evanescent waves are taken into account
explicitly.
Plate 2 (L1 Q xQL2)

At this point, a new parameter is introduced, namely the critical frequency vcrit above
which the matrix [K(l)] in expression (6) becomes ill-conditioned (typically when the
differences between the exponential functions lie beyond the numerical accuracy of the
computer used). Therefore, in addition to the frequency conditions applied to plate 1, the
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shape function is now also defined for vcrit . For k2 q a2 and l2 (L2 −L1)Qvcrit this
gives

W2 (x, t)=A2 sin (l1 [x−L1])+B2 cos (l1 [x−L1])+C2 e−l2 (x−L1) +D2 el2 (x−L1) (9)

and for k2 q a2 and l2 (L2 −L1)qvcrit

W2 (x, t)=A2 sin (l1 [x−L1])+B2 cos (l1 [x−L1])+C2 e−l2 (x−L1) +D2 el2 (L2 − x). (10)

In both of the above cases, for the condition when k2 Q a2, the shape function is obtained
by replacing the periodic functions (sin and cos) with hyperbolic ones (i.e. sinh and cosh).
Plate 3 (L1 Q xQL2)
for k2 q a2

W3 (x, t)=A3 {sin (l1 [x−L2])− tan (l1 [L−L2]) cos (l1 [x−L2])}

+C3 {sinh (l2 [x−L2])− tanh (l2 [L−L2]) cosh (l2 [x−L2])} (11)

and again, for k2 Q a2, the periodic functions are replaced by hyperbolic functions.

3. THE OPTIMIZER

Optimization problems of the sort posed here are characterised by having many
variables, highly non-linear relationships between the variables and the objective function,
and an objective function that has many peaks and troughs. Moreover, any one
configuration is time consuming to evaluate. In short they are difficult to deal with. The

Figure 4. Natural frequencies of the first 50 odd modes corresponding to n=1–9, uniform plate.
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T 2

Number of modes lying in the frequency range 0–1000 rad/s

Nodal line (n) 1 2 3 4 5 6 7 8

Mode (m) 40 39 37 35 31 27 20 5

Figure 5. Response (deflection in m per unit force in N) of the uniform plate for various modal summation
widths: —— 0–500 rad/s; – – – 0–750 rad/s; – · – · – 0–1000 rad/s.

search for methods that can cope with such problems has lead to the subject of
evolutionary computation. Techniques in this field are characterised by a stochastic
approach to the search for improved solutions, guided by some kind of evolutionary
control strategy. These are three main methods in use: (i) simulated annealing [7], where
the control strategy is based on an understanding of the kinetics of solidifying crystals;
(ii) genetic algorithms [8], where the methods of Darwinian evolution are applied to the
selection of ‘fitter’ designs and (iii) evolutionary programming [9], which is a more heuristic
approach to the problem but which has an increasing number of adherents.

The General Algorithm (GA) used here is fairly typical of those discussed in the well
known book by Goldberg [8] but encompasses a number of new ideas that are particularly
suited to engineering design problems [10, 11]. Such methods work by maintaining a pool
or population of competing designs which are combined to find improved solutions. In
their basic form, each member of the population is represented by a binary string that
encodes the variables characterising the design. The search progresses by manipulating the
strings in the pool to provide new generations of designs, hopefully with better properties
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on average than their predecessors. The processes that are used to seek these improved
designs are set-up to mimic those of natural selection: hence the method’s name. The most
commonly used operations are currently: (i) selection according to fitness, i.e. the most
promising designs are given a bigger share of the next generation; (ii) crossover, where
portions of two good designs, chosen at random, are used to form a new design, i.e. two
parents ‘breed’ an ‘offspring’; (iii) inversion, whereby the genetic encoding of a design is
modified so that subsequent crossover operations affect different aspects of the design and
(iv) mutation, where small but random changes are arbitrarily introduced into a design.
In addition, the number of generations and their sizes must be chosen, as must a method
for dealing with constraints (usually by application of a penalty function).

The algorithm used here works with 12 bit binary encoding. It uses an elitist survival
strategy which ensures that the best of each generation always enters the next generation
and has optional niche forming to prevent dominance by a few moderately successful
designs preventing wide ranging searches. Two penalty functions are available to deal with
constraints. The main parameters used to control the method may be summarised as
follows: the number of generations allowed (default 10), the population size or number
of trials used per generation which is therefore inversely related to the number of
generations given a fixed number of trials in total (default 100), the proportion of the
population that survive to the next generation (default 0·8), the proportion of the surviving
population that are allowed to breed (default 0·8), the proportion of this population that
have their genetic material re-ordered (default 0·5), the proportion of the new generation’s
genetic material that is randomly changed (default 0·005); a proportionality flag, which

Figure 6. Response (deflection in m per unit force in N) of the uniform plate compared with results from the
dynamic stiffness method: —— modified Chopra method; – – – dynamic stiffness method (curves virtually
identical).
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Figure 7. A simply supported stepped plate with eight joint lines.

selects whether the new generation is biased in favour of the most successful members of
the previous generation or alternatively if all the best survivors are propagated equally
(default TRUE), and the penalty function choice.

When using the GA to explore large design spaces with many variables, it has also been
found that the method must be prevented from being dominated by a few moderately good
designs which prevent further innovation. A number of methods have been proposed to
deal with this problem; that used here is based on MacQueen’s Adaptive KMEAN
algorithm [12] which has recently been applied with some success to multi-peak problems
[13]. This algorithm subdivides the population into clusters that have similar properties.
The members of each cluster are then penalized according to how many members the
cluster has and how far it lies from the cluster centre. It also, optionally, restricts the
crossover process that forms the heart of the GA, so that large successful clusters mix solely
with themselves. This aids convergence of the method, since radical new ideas are
prevented from contaminating such sub-pools.

In addition, the implementation of the GA used here allows the solution of individual
members of the population to be run in parallel if a multiple processor computer is
available.

4. EXAMPLE CALCULATIONS

Perhaps the best way to examine the performance of this method is to apply it to a
uniform flat plate modelled by several equal thickness sections. In this way, all the
boundary conditions are employed except those related to thickness ratio between adjacent
plates and the exact results are easy to establish. Consider, a 4-joint plate, as already shown
in Figure 1, but now with the same properties for each element, as per Table 1.

Next, for comparison, consider a single lightly damped uniform plate with pairs of
opposite sides that are simply supported, being excited on (xj , yj ), by a harmonic point
force fj exp(ivt), as depicted in Figure 3. The deflection w of the plate at x0, y0 due to the
point force is given by

w(x0, y0 ; v)= fj g(xj , yj , x0, y0 ; v) (12)

where

g(xj , yj , x0, y0 ; v)= s
m=1

s
n=1

cmn (xj , yj )cmn (x0, y0)
bmn (v2

mn −v2 + i2hvvmn )
(13)

is the Green Function [14] for any two-dimensional system, in terms of its uncoupled
modes. In this case, the eigenfunctions are given simply by

cmn (xj , yj )= sin (mpx/a) sin (npy/b) (14)
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T 3

Dimensions of the stepped plate

h1 =0·001 (m) Forcing point (xj , yj )= (0·1, 0·1) (m)
h2 =0·002 (m) Response point (x0, y0)= (4·9, 0·9) (m)
8-Joints positioned at a=5 (m)
(0·9, 1·0, 1·9, 2·0, 2·9, 3·0, 3·9, 4·0) (m) b=1 (m)

Figure 8. Response (deflection in m per unit force in N) of the stepped plate compared with results from the
dynamic stiffness method; key as per Figure 6 (curves virtually identical).

and the eigenvalues by

vmn =zD/rh {(mp/a)2 + (np/b)2} (15)

while the orthogonality constant for mass normalized modes is bmn = rhab/4. Comparison
with this simple theory serves to illustrate a number of aspects of the model used.

4.1.       

As noted in the previous sub-section the harmonic response of a plate is found here by
use of Green functions based on two infinite summations over the plate’s modes. However,
to obtain the response in practical calculations, one has to choose a finite number of modes
that contribute towards the response at any frequency of interest. Apart from obvious
concerns regarding accuracy, there is another important consideration here. Since
optimization is the ultimate objective of this work, speed of calculation is important. The
calculation of mode shapes and their natural frequencies, particularly for higher modes,
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Figure 9. Response (deflection in m per unit force in N) of the stepped plate compared with results from the
dynamic stiffness and finite element methods for the frequency range of 50–70 Hz: —— modified Chopra method;
– – – dynamic stiffness method; – · – · – finite element method (modified Chopra and dynamic stiffness methods
virtually identical).

is somewhat time consuming. Therefore, using modes that do not significantly
contribute towards the response within the frequency range of interest, is inefficient.
Hence, one has to estimate the minimum number of modes that are required for
response calculations. Figure 4 illustrates the variation of natural frequencies of each
of the first 50 odd modes corresponding to n=1–9. As can be readily seen, as the nodal
lines increase in number, the frequencies of the modes increases almost linearly. So, if
for the example in hand, the frequency range of interest were between 0 and 1000 rad/s,
then the number of modes for each nodal line lying at or below this frequency would
be as given in Table 2.

Figure 5 then shows the response of the uniform plate for various number of modes,
covering frequency ranges of 0–500, 0–750 and 0–1000 rad/s. It is clear that apart
from the small differences near zero, the three responses are almost identical up to
the cut off points of the 0–500 and 0–750 curves, after which they drop to zero, as
expected.

It is also worth noting that, as far as speed of calculation is concerned, there is one
further piece of information that can be extracted from this figure. In the method
employed here, for each nodal configuration a search has to be carried out to find its
natural frequencies. Again, time is wasted if this search is carried out over the entire
frequency range of interest. Setting the lower search frequency close to that of the first
mode for each nodal line, saves time and speeds up this calculation. The above
approach has been used in obtaining the responses of all the cases presented here. The
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Figure 10. A simply supported mass-loaded, stepped plate with eight joint lines.

Figure 11. Response (deflection in m per unit force in N) of the mass-loaded, uniform plate, compared with
results from the finite element method (0·5 kg masses): —— FDF method; – · – · – finite element method.

response of the uniform plate depicted in Figure 3, is plotted in Figure 6 for the frequency
range of 0–1000 rad/s, together with results for the dynamic stiffness method [1]. It can
be seen from the figure that there is a perfect agreement between the various methods as
the curves are indistinguishable over most of the range of frequencies.

4.2.      

To demonstrate the effectiveness of this method when applied to a stepped plate, a
simply supported steel plate with four stiffeners is considered next (see Figure 7). The
dimensions and properties of the plate are given in Table 3. The stiffener to plate thickness
ratio is 2 : 1 and the plate is divided into nine parts (five plates and four stiffeners,
reminiscent of a typical plated and stiffened structure). The natural frequencies and forced
response of the plate have been calculated and the results are compared here with the
dynamic stiffness and finite element methods. The finite element vibration analysis was
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Figure 12. Response (deflection in m per unit force in N) of the mass-loaded, stepped plate for various modal
summation widths: —— 0–750 rad/s; – – – 0–1000 rad/s; – · – · – 0–1500 rad/s.

performed using IDEAS [15] which is a widely used commercial package. The main part
of the grid was formed with some 500 four noded-quadrilateral elements using Kirchhoff
thin plate theory. The response of the stepped plate is compared with the dynamic stiffness
method in Figure 8 for the frequency range of 1–500 rad/s. It can be seen that, apart from
the very low frequency values (i.e. Q20 rad/s) there is almost a perfect agreement between
the two curves. See also Figure 9 where comparison is made for the reduced frequency
range of 314·2–439·8 rad/s (50–70 Hz), together with the results of the finite element
method (this frequency range is adopted later for the purposes of optimization). The graph
shows very good agreement between the three methods with a maximum error of about
2·3% occurring at around 63 Hz.

5. HARMONIC RESPONSE OF A MASS-LOADED STEPPED PLATE

As mentioned earlier, the objective of this work is to explore the possibility of using
point masses to modify the vibrational behaviour of stiffened plates. Such designs could
subsequently be used in passive noise control, which is the ultimate aim of the current
project. McMillan and Keane [16] investigated three different approaches to the analysis
of mass-loaded plates and compared their results with the finite element method. Based
on their results, the most appropriate method for this work is what they termed the
Frequency Dependent Forces (FDF) method. In this method, each point mass is treated
as a frequency dependent force from which the frequency response of the plate can be
determined in terms of the unloaded plate Green function. In what follows, the FDF
method is briefly outlined.
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5.1.  F D F (FDF) 

The partial differential equation for forced motion of the plate can generally be written
as

D94w+ rh
12w
1t2 =F(x, y, t) (16)

where all the symbols have their usual meanings and F(x, y, t) is the sum of all
forces applied to the plate and includes both (a) a real force fj applied at (xj , yj ), which
can be expressed as: F(x, y, t)= fj d(x− xj )d(y− yj ) eivt and (b) all forces associated
with the loading due to the point masses. Earlier the harmonic response of a uniform
plate to a point force was noted, see equations (12) and (13). Now, if there are l masses
attached to the plate with positions (xk , yk ) then each mass, Mk , provides a point force
on the plate of

fk (x, y)=−Mk
12w
1t2 =Mk v2w(xk , yk ). (17)

The deflection of the plate at any point (x0, y0) due to the applied force fj and those due
to the l masses is thus given by

w(x0, y0, v)= fj g(xj , yj , x0, y0 ; v)+ s
l

k=1

fk g(xk , yk , x0, y0 ; v). (18)

Figure 13. Response (deflection in m per unit force in N) of the mass-loaded, stepped plate compared with
results from the finite element method (0·5 kg masses); key as per Figure 11.
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T 4

Original and optimized objective functions for various mass numbers and mass positions

Number of Original Optimized Ratio Ratio optim/
masses obj. function obj. function orig/optim. unloaded*

1(L) 0·3559×10−4 0·9986×10−5 3·56 3·39
1(R) 0·2473×10−4 0·1335×10−5 1·85 2·53
2(L) 0·1819×10−4 0·4377×10−5 4·16 7·73
2(R) 0·2436×10−4 0·5779×10−5 4·22 5·85

2(LR) 0·4304×10−4 0·3235×10−5 13·30 10·46
5(L) 0·1754×10−4 0·1991×10−5 8·81 16·99
5(R) 0·3887×10−4 0·2481×10−5 15·67 13·64

10(LR) 0·3061×10−4 0·8864×10−5 34·53 38·17
20(LR) 0·3060×10−4 0·1487×10−5 20·58 22·75

L: all masses on the 2nd bay, R: all masses on the 4th bay, LR: half the number of masses on the 2nd and
half on the 4th bay, see Figure 10.

* The objective function for the unloaded plate is 0·3383×10−4.

Figure 14. Response (deflection in m per unit force in N) of the optimized mass-loaded, stepped plate,
compared with that for the randomly mass-loaded plate and the unloaded plate (ten 0·5 kg masses): ——
optimized mass-loaded plate; – – – randomly mass-loaded plate; – · – · – unloaded plate.

Now, for each of the l masses positioned on the plate, by using equation (17), l equations
of the form

fk =Mk v26 fj g(xj , yj , x0, y0 ; v)+ s
l

k=1

fk g(xk , yk , x0, y0 ; v)7 (19)
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are obtained. These simultaneous equations can then be solved for the l unknown
frequency dependent forces fk . The deflection of the plate at any point (x0, y0) can
subsequently be found by using equation (18). However, in the original reference a uniform
thickness plate was considered for which the Green function is well known, whereas the
plate being studied here is stepped. Therefore, the Green function has to be obtained from
the modified Chopra method already discussed in Section 2. In doing so, the mode shapes
in equation (13) have to be normalized for the stepped plate and as a result, the coefficients
bmn in the Green function are then given by

bmn = s
N

i=1

rhi g
b

0 g
Li

Li−1

c2
mn (x, y) dx dy= rb/2 s

N

i=1

hi g
Li

Li−1

c2
mn (x) dx. (20)

Note that since the plate is uniform in the y-direction, the integral of the shape function
squared, between zero and width b is simply b/2.

5.2.          - 

It was noted earlier that in calculating the harmonic response of a plate by use of the
Green function summation, only a finite number of modes that contribute towards the
response need be used. It was shown that in order to reduce computation time, it is possible
to find the minimum number of modes required for accurate evaluation of the response
and that accurate results can be obtained by summing over those modes that fall within
the frequency range of interest. Obviously, by adding point masses, the behaviour of the
plate is altered and the above conclusion cannot be applied directly. As was discussed in

Figure 15. Response (deflection in m per unit force in N) of the optimized mass-loaded, stepped plate,
compared with results from the finite element method (ten 0·5 kg masses); key as per Figure 11.
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Figure 16. Objective function variations (deflection in m per unit force in N) for the stepped plate carrying
two 2·5 kg point masses [i.e. 2(LR)], obtained for four independent runs with different random number sequences.

the last section, the response of a mass-loaded plate is carried out here through the FDF
method which uses the mode shapes and natural frequencies of the unloaded plate. Hence,
information is not used for the mode shapes and natural frequencies of the combined
mass-loaded plate and consequently, the minimum number of modes for response
calculations has to be found empirically. Various examples with different mode
combinations were carried out and the responses compared with FE models. It was then
concluded that in order to obtain a reasonably accurate response of the mass-loaded plate,
modes that fall within a frequency range from zero to three times that of the range of
interest should be used. In the following sections this criterion is used when calculating
the response of the mass-loaded stepped plate.

5.3.    - 

In this section the uniform and stepped plates analysed earlier are employed again but
now 10 point masses are randomly positioned on the two plate elements that are bounded
within x=1·0–1·9 and x=3·0–3·9 m (see Figure 10). The overall value of the point masses
is taken to be about 10% of the plate’s weight. The combined revised Chopra and FDF
methods are used to calculate the response of the mass-loaded stepped plate. The harmonic
responses of the combined system are calculated for the arbitrary frequency range of
50–70 Hz and the results compared with those from the finite element (FE) method. The
FE model employs a 10×50 mesh, each element having dimensions of 10×10 cm.
Figure 11 shows the harmonic response of the mass-loaded, uniform plate together with
the FE results. It can be seen that there is a good agreement between the two curves for
most frequencies.
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At this point, it is worth examining the effect of modal summation width on the response
of the mass-loaded plate. Figure 12 shows the response of the mass-loaded plate for various
modal summations (cf. Figure 5). The figure shows that improved results are obtained by
adding more modes, as expected. However, as will be discussed later, in this work the area
under the response curve is the main goal, as this measures energy transfer and the change
in this quantity is not very significant. Finally, the harmonic response of the mass-loaded,
stepped plate is plotted in Figure 13, together with the FE results. As expected the
agreement between the curves is not as good as for the uniform plate. This is mainly
because in the FDF method, any error due to inaccuracy in the estimation of the mode
shapes accumulates in the calculations of the mass-loaded response, as the Green function
is used l 2 times in solving the simultaneous equations (19).

6. OPTIMIZATION OF MASS POSITIONS

Having obtained the harmonic response of a mass-loaded, stepped plate, the next
consideration is the search for the best mass positions to obtain the desired response. The
idea here being to apply minor changes to the structure, but which are big enough to
modify its frequency response. The changes are targeted towards the suppression of
vibrations within a given frequency band, reducing the overall vibrational energy transfer
of the structure. Here again, the long rectangular stepped plate carrying a series of identical
point masses is considered, already illustrated in Figure 10.

The plate is excited by a unit harmonic point force at point A on the plate and the
response is measured at point B. The integral of the frequency response over the frequency

Figure 17. Response (deflection in m per unit force in N) of the stepped plate carrying two 2·5 kg point masses
[i.e. 2(LR)], obtained for four independent runs with different random number sequences.
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Figure 18. Objective function variation (deflection in m per unit force in N) for the stepped plate, carrying
ten 0·5 kg masses.

range of 55–65 Hz is regarded as the objective function which is to be minimized. As far
as the optimization process is concerned, due to the large number of variables present in
this problem, using traditional slope descent based methods would be very time
consuming. However, there are a number of recently developed evolutionary techniques
that are ideal for dealing with problems containing large search spaces [2]. One advantage
of these techniques over traditional slope based methods is that their convergence rates
are typically less rapidly deteriorated by increases in the number of variables. In this work,
the GA described earlier is employed to produce the desired design.

7. RESULTS AND DISCUSSION

For this study the total mass of the point masses is taken to be 5 kg in all the cases
presented. Optimization runs were carried out on the plate when loaded with 1, 2, 5, 10
and 20 randomly placed masses. In all cases the point masses were constrained to lie within
the second and fourth bays of the plate since it was considered that such positions would
effectively break up any travelling waves tuned to the periodic nature of the structure,
without the need to search over the whole domain for suitable positions. Here 25 000 GA
iterations were used with a population size of 250 and the values of the best objective
function recorded for each population. Table 4 compares the optimized objective function
(i.e. integral of the forced response of the plate between 55 and 65 Hz) after 25 000
iterations for each case with the objective function evaluated for the original, random, mass
positions and also for the stepped plate without masses. From the table it is clear that the
best result after 25 000 iterations is obtained for the plate carrying 10 masses although it



0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

1 2 3 4 5

Length (m)

W
id

th
 (

m
)

     883

is obvious that a fully optimized 20 mass arrangement should be at least as good as the
best 10 mass design. Clearly, 25 000 iterations is not enough to ensure convergence for a
case with so many variables. Even so, the 20 mass design represents almost eight times
as much computational effort as the 10 mass case since the bulk of the effort involved in
studying the performance of such designs lies in the solution of the simultaneous equations
inherent in the FDF analysis. (In fact, a further very extensive search over some 400 000
iterations for the 20 mass case results in an objective function of 0·7228×10−6, i.e. now
significantly better than for the 10 mass case but at enormous computational cost.)

The response of the plate with 10 masses placed at these optimized positions is plotted
in Figure 14, together with that for 10 randomly positioned masses and also the unloaded
plate. The figure demonstrates a clear drop in the plate’s response within the frequency
range of 55–65 Hz, the maximum of which is about 3 decades, occurring at around 64 Hz.
The response of this optimized design may be validated by comparing against a finite
element analysis for these mass positions (see Figure 15). The figure shows that, although
there are differences between the responses calculated by these two methods the overall
improvements in the design are preserved and the areas under the curves very similar.

Having noted that the 20 mass design achieved by optimization with 25 000 iterations
cannot be fully converged, attention is next turned to the stochastic nature of the
optimization method used. In order to gain confidence in the final result of a stochastic
method applied to a problem with many possible solutions, it is useful to employ runs with
different random number sequences [2]. Here, this confidence test is applied to the case
of one point mass placed on each of the 2nd and 4th bays of the stepped plate
(computational limits prevented it being applied to the cases with more masses). Four

Figure 19. Optimized mass positions after spatial averaging ( w) together with the original, random
positions (+).
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Figure 20. Response (deflection in m per unit force in N) of the spatially averaged and optimized mass-loaded,
stepped plate, compared with that for the randomly mass-loaded plate and the unloaded plate (ten 0·5 kg masses);
key as per Figure 14.

independent runs of 25 000 iterations were carried out and the values of the best objective
functions for each of the generations recorded (see Figure 16). The resonse of the
mass-loaded plate for the final optimized mass positions, corresponding to the four runs,
are depicted in Figure 17. These figures clearly demonstrate the robustness of the GA
method used, with all four cases converging towards the same final optimized result for
this more limited problem. A plot of the objective function against number of search
iterations for the 10 mass case discussed earlier indicates that this design is probably not
converged, however (see Figure 18). With further computational effort it would no doubt
be possible to obtain even greater reductions in energy transmission for this case, although
it is by no means clear how much further effort would be warranted given the large
improvements already obtained.

7.1.  

Having found sets of reasonably well optimized mass positions the final area to be
considered concerns the performance of the optimized designs in practice. When dealing
with structural dynamics it is very difficult to build real structures that are identical to the
ones used in simulations. The vibrational behaviour of real structures commonly differs
markedly from the inevitably idealized models used for calculations, particularly in regards
to the values of individual natural frequencies and the mode shapes that they yield.
Therefore, a highly optimized computational solution to a problem will not necessarily
produce the modelled results in practice and consequently, predicted reductions in the
objective function may not be obtained. It has been found that averaging spatially over
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Figure 21. Response (deflection in m per unit force in N) of the spatially averaged and optimized mass-loaded,
stepped plate, compared with results from the finite element method (ten 0·5 kg masses); key as per Figure 11.

the drive and response points used, as well as the range of frequencies considered, helps
reduce this sensitivity [17]. The optimized design is then based on those mass positions that
produce the minimum average objective function. Such spatial averaging does, however,
result in somewhat reduced vibration isolation characteristics: this deterioration is traded
off against the increased robustness of the results.

Here, spatial averaging was carried out on the stepped plate carrying 10 point masses.
The unit harmonic force was applied at three different points on the first bay, forming the
corners of an equilateral triangle. The sides of the triangle were one quarter of the wave
length of the mid-frequency (60 Hz) in length, which is about 0·1 m. On the fifth bay, seven
different response points were then chosen, forming the corners and centre of a hexagon
with similar length sides. Six random combinations of these possible input–output points
were chosen and the corresponding responses calculated, from which the average response
was obtained. The GA optimization process was carried out aiming to minimize the
integral of the average response within the frequency range of 55–65 Hz. Figure 19 shows
the resulting optimized mass positions together with the original random positions. The
response of the plate for these optimized mass positions is plotted in Figures 20 and 21
where it is compared with the average responses for random mass positions, the unloaded
plate and an equivalent FE model (cf. Figures 14 and 15). Again, significant reductions
in energy transfer over the frequency range of interest are achieved and, moreover,
correlation with the FE results is improved. The spaced averaged optimized objective
function for the mass-loaded plate was found to be 12·78 times less than for the unloaded
plate. As expected, this reduction is rather less than that for single drive and response
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points but still represents an order of magnitude increase in noise isolation over the bare
stiffened plate. It is also more likely to be realisable in practice.

8. CONCLUSIONS

An existing analytical method has been developed to deal with the vibrational behaviour
of simply supported stepped plates. Comparisons of this approach with the dynamic
stiffness and finite element methods reveal almost perfect agreement. Having established
the validity of the method, it has then been combined with the method of FDF to tackle
the vibration analysis of a mass-loaded stepped plate. Numerical examples of various
configurations have been compared with finite element models and satisfactory agreement
obtained. This agreement is almost perfect with few added masses but starts to deteriorate
as the number of masses rises. The main characteristic of the method presented are: (a)
the method is analytically based and allows direct control over the parameters determining
the vibrational behaviour of mass-loaded stepped plates; (b) it is easy to implement being
based on simple underlying equations and (c) the speed of solution is very much faster
than using equivalent finite element methods. These characteristics make the approach
ideal for the ultimate aim of this work which is the vibrational optimization of mass-loaded
stepped plates.

The objective function used here is taken to be minimization of the integral of the
response of a mass-loaded stepped plate over a limited band of frequencies containing
some 10–15 modes. The GA, which is an evolutionary computing method, has been
employed to search for suitable mass positions in order to minimize this objective. The
results from using various numbers of masses (while keeping the overall added mass
constant) show that significant reductions in vibration transmission can be obtained. The
results also indicate that, with the same overall mass value, greater reductions in the
objective function are achieved by using increased numbers of smaller point masses
scattered on the plate. Finally, to enhance the robustness of the resulting designs, the
optimization process for the 10 mass cases has been carried out using spatial averaging
of the drive and response points. This final approach improves correlation of the results
with the finite element models.

It is hoped that the work presented demonstrates that significant passive structural
vibration control might be achieved in real structures by accepting modest departures from
conventional plated and stiffened designs.
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NOTATION

a, b plate dimensions
N number of plate subsections
hi thickness of the ith part of the plate
An , Bn , Cn , Dn coefficients of the shape functions
D plate flexural rigidity, Eh3/12(1− n2)
E Young’s Modulus
r plate density
n Poisson’s ratio
a np/b
v frequency (rad/s)
k4

i rv2hi /Di

m number of half sine waves in the x-direction
n number of half sine waves in the y-direction
l number of added masses
w(x, y, t) time dependent transverse deflection of the plate
Wj (x, y) shape function of the jth part of the plate
l eigenvalue
h damping ratio
c(x) shape function in the x-direction


